
-
法匹拉韋
NMR and HPLC COA下載 MSDS下載 - Names:
Favipiravir
- CAS號:
259793-96-9
MDL Number: MFCD16879084 - MF(分子式): C5H4FN3O2 MW(分子量): 157.0287545
- EINECS: Reaxys Number:
- Pubchem ID: Brand:BIOFOUNT
法匹拉韋(Favipiravir,259793-96-9)是一種吡嗪甲酰胺衍生物,F(xiàn)avipiravir具有抗RNA病毒活性。Favipiravir 通過宿主酶轉(zhuǎn)化為呋喃三磷酸核糖酯衍生物,可以選擇性地抑制流感病毒RNA依賴的RNA聚合酶。
貨品編碼 | 規(guī)格 | 純度 | 價格 (¥) | 現(xiàn)價(¥) | 特價(¥) | 庫存描述 | 數(shù)量 | 總計 (¥) |
---|---|---|---|---|---|---|---|---|
HCQ000001-1g | 1g | 98% | ¥ 1200.00 | ¥ 1200.00 | instock | ¥ 0.00 | ||
HCQ000001-100mg | 100mg | 98% | ¥ 580.00 | ¥ 580.00 | instock | ¥ 0.00 |
中文別名 | 法維拉韋;法匹沙韋;法匹拉韋(CAS:259793-96-9,MSDS,應(yīng)用,溶解度,),法匹拉韋雜質(zhì) |
英文別名 | Favipiravir,259793-96-9,Favipiravir (T-705),T 705,T-705,T705 |
CAS號 | 259793-96-9 |
Inchi | InChI=1S/C22H25BrN2O3S/c1-5-28-22(27)20-18(13-29-14-9-7-6-8-10-14)25(4)17-11-16(23)21(26)15(19(17)20)12-24(2)3/h6-11,26H,5,12-13H2,1-4H3 |
InchiKey | KCFYEAOKVJSACF-UHFFFAOYSA-N |
分子式 Molecular Weight | C5H4FN3O2 |
分子量 Formula | 157.0287545 |
溶解度Solubility | 8.7 mg/mL,slightly soluble in water |
性狀 | 固體粉末 |
儲藏條件 Storage conditions | Store at room temperature |
法匹拉韋(CAS:259793-96-9,英文名:favipiravir)Protocol:
法匹拉韋細胞實驗 | |
---|---|
Cell lines | MDCK cells, Vero cells, HEL cells, A549 cells, HeLa cells, and HEp-2 cells |
Preparation method | The cytotoxicity of T-705 is evaluated by an assay with XTT. XTT is converted to aqueous formazan by an enzyme in MDCK cells, Vero cells, HEL cells, A549 cells, HeLa cells, and HEp-2 cells. The compounds are diluted to the appropriate concentrations (volume, 100 μl) with test medium (EMEM containing 10% FCS) in 96-well culture plates in which each well contains a concentration of 2 × 103 cells/100 μL. The test plates are incubated for 3 days at 37°C in 100% humidity and 5% CO2. After 3 days, 50 μl of the XTT reagent (1 mg/ml in FCS-free EMEM containing 5 mM phenazine methosulfate) is added, and the reaction product is assayed by measurement of the absorbance at 450 nm with a microplate reader. Cytotoxicity is expressed as the 50% cell-inhibitory concentration (CC50). |
Concentrations | 1000 μg/mL |
Incubation time | 3 d |
法匹拉韋動物實驗
|
|
---|---|
Animal models | Mice infected with influenza virus A/PR/8/34 |
Formulation | 0.5% methylcellulose |
Dosages | 200 mg/kg/day |
Administration | p.o. |
Conversion of different model animals based on BSA (Value based on data from FDA Draft Guidelines)
Species | Mouse | Rat | Rabbit | Guinea pig | Hamster | Dog |
Weight (kg) | 0.02 | 0.15 | 1.8 | 0.4 | 0.08 | 10 |
Body Surface Area (m2) | 0.007 | 0.025 | 0.15 | 0.05 | 0.02 | 0.5 |
Km factor | 3 | 6 | 12 | 8 | 5 | 20 |
Animal A (mg/kg) = Animal B (mg/kg) multiplied by | Animal B Km |
Animal A Km |
For example, to modify the dose of resveratrol used for a mouse (22.4 mg/kg) to a dose based on the BSA for a rat, multiply 22.4 mg/kg by the Km factor for a mouse and then divide by the Km factor for a rat. This calculation results in a rat equivalent dose for resveratrol of 11.2 mg/kg.

Tags:法匹拉韋 試劑,法匹拉韋 抑制劑,法匹拉韋 衍生物,法匹拉韋 磷酸鹽衍生物,法匹拉韋 雜質(zhì),法匹拉韋 中間體,法匹拉韋 公司,法匹拉韋 購買;法匹拉韋 供應(yīng)商,
產(chǎn)品說明 | 法匹拉韋(259793-96-9,favipiravir)5-羥基-法匹拉韋,法匹拉韋一磷酸,法匹拉韋二磷酸,法匹拉韋三磷酸均為有效的病毒抑制劑 |
Introduction | Favipiravir(259793-96-9)Favipiraviris triphosphate are initially approved for therapeutic use in resistant cases of influenza.7,9 The antiviral targets RNA-dependent RNA polymerase (RdRp) enzymes. |
Application1 | 潛在冠狀病毒抑制劑Experimental Unapproved Treatments for COVID-19,may be an alternative option for influenza strains that are resistant to neuramidase inhibitors.9,19 |
Application2 | 法匹拉韋在人體內(nèi)通過與糖作用生成“SCHEMBL7215591”,之后在結(jié)合磷酸鹽生成法匹拉韋三磷酸形式產(chǎn)物,最終對病毒產(chǎn)生作用。 |
Application3 | Favipiravir has been investigated for the treatment of life-threatening pathogens such as Ebola virus, Lassa virus, and now COVID-19.10,14,15 |
法匹拉韋(CAS:259793-96-9,英文名:favipiravir)不僅可以抑制甲型和乙型流感病毒的復制,而且該藥在禽流感的治療中也有不錯的療效,并且可能是對神經(jīng)酰胺酶抑制劑有抗藥性的流感菌株的替代選擇。可以作為治療威脅生命的病原體,例如埃博拉病毒,拉沙病毒和現(xiàn)在的COVID-19
Favipiravir作為前藥起作用,并在細胞內(nèi)進行核糖基化和磷酸化,成為活性的Favipiravir-RTP。Favipiravir-RTP結(jié)合并抑制RNA依賴性RNA聚合酶(RdRp),最終可以阻止病毒轉(zhuǎn)錄和復制。
與現(xiàn)有的流感抗病毒藥相比,favipiravir的作用機制是新穎的,主要能阻止病毒從細胞中進入和退出?;钚缘膄avipiravir-RTP選擇性抑制RNA聚合酶并阻止病毒基因組的復制。目前有幾種假設(shè)favipiravir-RTP如何與RNA依賴性RNA聚合酶(RdRp)相互作用。一些研究表明,將favipiravir-RTP摻入新生的RNA鏈中時,它會阻止RNA鏈延長和病毒增殖。7研究還發(fā)現(xiàn), 嘌呤類似物可以降低favipiravir的抗病毒活性,表明favipiravir-RTP和嘌呤核苷之間存在RdRp結(jié)合競爭7。
盡管favipiravir最初是開發(fā)用于治療流感的,但預計RdRp催化域(favipiravir的主要靶標)與其他RNA病毒相似。這種保守的RdRp催化域有助于favipiravir的廣譜覆蓋。
transcription of virus RNA segments. The transcription of viral mRNAs occurs by a unique mechanism called cap-snatching. 5' methylated caps of cellular mRNAs are cleaved after 10-13 nucleotides by PA. In turn, these short capped RNAs are used as primers by PB1 for transcription of viral mRNAs. During virus replication, PB1 initiates RNA synthesis and copy vRNA into complementary RNA (cRNA) which in turn serves as a template for the production of more vRNAs.Favipiravir shows anti-influenza virus activities with IC50 ranged from 0.013 to 0.48 μg/ml for the influenza A viruses, from 0.039 to 0.089 μg/ml for the influenza B viruses, and from 0.030 to 0.057 μg/ml for the influenza C viruses. In mammalian cell lines (MDCK cells, Vero cells, HEL cells, A549 cells, HeLa cells, and HEp-2 cells), Favipiravir shows no cytotoxicity at concentrations up to 1,000 μg/ml. In MDCK cells inoculated with seasonal influenza A (H1N1) viruses, Favipiravir induces lethal mutagenesis.
Beigel J, Bray M: Current and future antiviral therapy of severe seasonal and avian influenza. Antiviral Res. 2008 Apr;78(1):91-102. doi: 10.1016/j.antiviral.2008.01.003. Epub 2008 Feb 4. [PubMed:18328578] |
Hsieh HP, Hsu JT: Strategies of development of antiviral agents directed against influenza virus replication. Curr Pharm Des. 2007;13(34):3531-42. [PubMed:18220789] |
Gowen BB, Wong MH, Jung KH, Sanders AB, Mendenhall M, Bailey KW, Furuta Y, Sidwell RW: In vitro and in vivo activities of T-705 against arenavirus and bunyavirus infections. Antimicrob Agents Chemother. 2007 Sep;51(9):3168-76. Epub 2007 Jul 2. [PubMed:17606691] |
Sidwell RW, Barnard DL, Day CW, Smee DF, Bailey KW, Wong MH, Morrey JD, Furuta Y: Efficacy of orally administered T-705 on lethal avian influenza A (H5N1) virus infections in mice. Antimicrob Agents Chemother. 2007 Mar;51(3):845-51. Epub 2006 Dec 28. [PubMed:17194832] |
Furuta Y, Takahashi K, Kuno-Maekawa M, Sangawa H, Uehara S, Kozaki K, Nomura N, Egawa H, Shiraki K: Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother. 2005 Mar;49(3):981-6. [PubMed:15728892] |
Beigel J, Bray M: Current and future antiviral therapy of severe seasonal and avian influenza. Antiviral Res. 2008 Apr;78(1):91-102. doi: 10.1016/j.antiviral.2008.01.003. Epub 2008 Feb 4.
Hsieh HP, Hsu JT: Strategies of development of antiviral agents directed against influenza virus replication. Curr Pharm Des. 2007;13(34):3531-42.
Gowen BB, Wong MH, Jung KH, Sanders AB, Mendenhall M, Bailey KW, Furuta Y, Sidwell RW: In vitro and in vivo activities of T-705 against arenavirus and bunyavirus infections. Antimicrob Agents Chemother. 2007 Sep;51(9):3168-76. Epub 2007 Jul 2.
Sidwell RW, Barnard DL, Day CW, Smee DF, Bailey KW, Wong MH, Morrey JD, Furuta Y: Efficacy of orally administered T-705 on lethal avian influenza A (H5N1) virus infections in mice. Antimicrob Agents Chemother. 2007 Mar;51(3):845-51. Epub 2006 Dec 28.
Furuta Y, Takahashi K, Kuno-Maekawa M, Sangawa H, Uehara S, Kozaki K, Nomura N, Egawa H, Shiraki K: Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother. 2005 Mar;49(3):981-6.
Furuta Y, Takahashi K, Fukuda Y, Kuno M, Kamiyama T, Kozaki K, Nomura N, Egawa H, Minami S, Watanabe Y, Narita H, Shiraki K: In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob Agents Chemother. 2002 Apr;46(4):977-81.
Furuta Y, Komeno T, Nakamura T: Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(7):449-463. doi: 10.2183/pjab.93.027.
Venkataraman S, Prasad BVLS, Selvarajan R: RNA Dependent RNA Polymerases: Insights from Structure, Function and Evolution. Viruses. 2018 Feb 10;10(2). pii: v10020076. doi: 10.3390/v10020076.
Hayden FG, Shindo N: Influenza virus polymerase inhibitors in clinical development. Curr Opin Infect Dis. 2019 Apr;32(2):176-186. doi: 10.1097/QCO.0000000000000532.
Madelain V, Nguyen TH, Olivo A, de Lamballerie X, Guedj J, Taburet AM, Mentre F: Ebola Virus Infection: Review of the Pharmacokinetic and Pharmacodynamic Properties of Drugs Considered for Testing in Human Efficacy Trials. Clin Pharmacokinet. 2016 Aug;55(8):907-23. doi: 10.1007/s40262-015-0364-1.
Nguyen TH, Guedj J, Anglaret X, Laouenan C, Madelain V, Taburet AM, Baize S, Sissoko D, Pastorino B, Rodallec A, Piorkowski G, Carazo S, Conde MN, Gala JL, Bore JA, Carbonnelle C, Jacquot F, Raoul H, Malvy D, de Lamballerie X, Mentre F: Favipiravir pharmacokinetics in Ebola-Infected patients of the JIKI trial reveals concentrations lower than targeted. PLoS Negl Trop Dis. 2017 Feb 23;11(2):e0005389. doi: 10.1371/journal.pntd.0005389. eCollection 2017 Feb.
de Farias ST, Dos Santos Junior AP, Rego TG, Jose MV: Origin and Evolution of RNA-Dependent RNA Polymerase. Front Genet. 2017 Sep 20;8:125. doi: 10.3389/fgene.2017.00125. eCollection 2017.
Shu B, Gong P: Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation. Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):E4005-14. doi: 10.1073/pnas.1602591113. Epub 2016 Jun 23.
Nagata T, Lefor AK, Hasegawa M, Ishii M: Favipiravir: a new medication for the Ebola virus disease pandemic. Disaster Med Public Health Prep. 2015 Feb;9(1):79-81. doi: 10.1017/dmp.2014.151. Epub 2014 Dec 29.
Rosenke K, Feldmann H, Westover JB, Hanley PW, Martellaro C, Feldmann F, Saturday G, Lovaglio J, Scott DP, Furuta Y, Komeno T, Gowen BB, Safronetz D: Use of Favipiravir to Treat Lassa Virus Infection in Macaques. Emerg Infect Dis. 2018 Sep;24(9):1696-1699. doi: 10.3201/eid2409.180233. Epub 2018 Sep 17.
Delang L, Abdelnabi R, Neyts J: Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Res. 2018 May;153:85-94. doi: 10.1016/j.antiviral.2018.03.003. Epub 2018 Mar 7.
Nature Biotechnology: Coronavirus puts drug repurposing on the fast track
Pharmaceuticals and Medical Devices Agency: Avigan (favipiravir) Review Report
World Health Organization: Influenza (Avian and other zoonotic)
- 相關(guān)產(chǎn)品
-
< >
- 推薦產(chǎn)品
-
< >
- 最新產(chǎn)品
-
< >
新聞

怎么做細胞爬片免疫組化染色實驗
細胞爬片免疫組化染色,是通過細胞爬片是讓玻片浸在細胞培養(yǎng)基內(nèi),細胞在玻片上生長,主要用于組織學,免疫組織化學...
2020/7/20 22:04:33

提取病毒RNA的實驗方法
提取病毒RNA方法分別有:異硫氰酸胍的提取病毒RNA方法、TRIzol LS提取法、Trizol法提取法等等...
2020/7/22 20:29:26

9月開學季——助研新學期 范德送好禮
2025/8/28 15:30:55

Waxfilm 實驗室封口膜:技術(shù)與國際市場的雙重突破
在實驗室耗材領(lǐng)域,封口膜是保障實驗準確性與穩(wěn)定性的關(guān)鍵產(chǎn)品之一。近年來,Waxfilm?實驗室封口膜憑借其卓...
2025/5/13 13:03:40

Waxfilm實驗室封口膜的5大突破
Waxfilm實驗室封口膜作為生物功能膜領(lǐng)域的國產(chǎn)技術(shù)突破和品牌突破,是生物領(lǐng)域中國技術(shù)發(fā)展的縮影。
2025/5/6 17:02:07

各種微流控芯片鍵合方法的優(yōu)缺點
微流控芯片鍵合:目前主要有激光焊接、熱壓鍵合、膠鍵合、超音波焊接,每種方法都有各自的優(yōu)缺點。本文主要介紹聚酯...
2023/7/28 10:43:09

新一代微流控鍵合解決方案
微流控鍵合解決方案:微流控芯片制造的一個重要環(huán)節(jié),也是最容易被忽視的--芯片鍵合。其中一個重要因素是:微流控...
2023/7/27 12:44:28

熒光素鉀鹽使用說明
D-熒光素鉀鹽(K+)設(shè)計用于體外和體內(nèi)生物發(fā)光測定。D-熒光素的質(zhì)量和純度對于獲得良好和可重復的結(jié)果至關(guān)重...
2023/7/20 11:05:11

如何選BSA(牛血清白蛋白)
如何選BSA(牛血清白蛋白):牛血清白蛋白(BSA)有多種形式,如何選擇適合自己的牛血清白蛋白(BSA)是一...
2023/2/14 13:09:18

牛血清白蛋白(BSA)常見問題
牛血清白蛋白(BSA)常見問題:牛血清白蛋白(BSA)在實驗室中是通用的,可用于蛋白質(zhì)印跡、細胞組織培養(yǎng)、P...
2022/10/19 9:39:51